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Isokinetic molecular-dynamics simulations have been performed for soft-sphere fluids of 4th-, 6th-,
9th-, and 12th-inverse-power potentials near the respective freezing point. We have investigated how
various dynamical properties of these fluids are influenced by the softness of the potentials to which
some groups of material are attributed. The reduced diffusion constant is found to be insensitive to
the choice of the softness of the potential. On the other hand, the frequency-dependent self-motion,
as characterized by the spectrum of the velocity autocorrelation function, shows a pronounced de-
pendence on the softness of the potential. The collective dynamics has also been studied in terms
of the dynamic structure factor, which has been calculated over a wide range of wave numbers,
covering the wave number corresponding to the first maximum of the static structure factor. A
persistent sound wave is observed for the softer potentials such as 4th- and 6th-inverse-power po-
tentials, which is in remarkable contrast to the results obtained for the steeper potentials such as
9th- and 12th-inverse-power potentials. These significant dynamical properties, dependent on the
softness parameter, are consistent with the dynamical behavior observed in liquid alkali metals and
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liquefied inert gases.
PACS number(s): 61.20.Lc, 61.20.Ja, 62.60.4+v

I. INTRODUCTION

The influence of the pair interaction on various prop-
erties of simple liquids is most typically seen in two fam-
ilies, liquefied inert rare gases and liquid alkali metals.
It is well known that the pair potential for a liquefied
inert gas is well described by the Lennard-Jones poten-
tial which is composed of a harsh, short-range repulsion
and a smoothly varying long-range attraction. On the
other hand, the effective ion-ion interaction for liquid al-
kali metals shows a much softer repulsive core than that
of rare gases and a deep attractive well followed by a
long-range oscillatory tail, caused by the presence of con-
duction electrons. Despite such a marked difference in
the effective interaction between these two families, it is
generally accepted that the structure of these liquids, at
least in their highly dense states, is largely determined
by a shape of a repulsive core and qualitative differences
in their structure reflect softness of the core [1].

The shape of repulsive interactions gives rather a mi-
nor effect on the structural properties of simple liquids as
seen by a fair similarity of the static structure factor of a
hard-sphere fluid to those of a variety of simple liquids,
including liquid alkali metals and liquefied inert gases [2,
3]. Minor but important differences in the static struc-
ture factor between liquid metals and inert rare gases
are that (1) the structure factor of liquid metals is more
rapidly damped compared with that of rare gases, and (2)
the long-wavelength limit of the structure factor, which is
proportional to the isothermal compressibility, is smaller
for metals than that for rare gases. These systematic dif-
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ferences have been found to rely upon a significant dif-
ference of the repulsive cores: liquid metals represent a
much softer core than inert rare gases, while the detailed
shape of the long-range part of the pair potentials is less
sensitive [4, 5].

The attractive interaction essentially gives rise to the
cohesive energy that is required to stabilize a liquid but
has little effect on the structure. This fact leads to a
clear basis of the successful perturbation theories of lig-
uid states. Indeed, the result of the computer experi-
ments [6,7] and the generalized van der Waals model [8],
in which the pair interaction is expressed by the inverse-
power potential (pure repulsion) and the Kac potential
[9] (pure attraction), shows that the melting properties
of the two families of liquids mentioned above can well
be explained by assigning a much softer interparticle re-
pulsion to liquid alkali metals than to liquefied rare gases
(10,11].

As far as dynamical properties are concerned, the dif-
ferences between liquid alkali metals and liquefied inert
gases are essential. First, the velocity autocorrelation
function for liquid alkali metals near the respective triple
point exhibits a pronounced oscillatory behavior [4, 12,
13], in marked contrast to that of liquid argon [14, 15].
The oscillation was found to be slightly sensitive to the
existence of long-range oscillatory tail of the pair inter-
action of liquid alkali metals [4]. The power spectrum
of the velocity autocorrelation function for liquid met-
als has a Debye-like spectrum [13]. Second, for the al-
kali metals, there is a very wide range of wavelength
in which the liquid can support propagating collective
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excitations of both transverse and longitudinal modes
[16-19], while for the Lennard-Jones system the range
is found to be quite narrow [20, 21]. This point was also
demonstrated by the molecular-dynamics (MD) simula-
tions for a “soft” Lennard-Jones potential [22]. These
dynamical differences are naturally associated with dif-
ferent elastic properties, e.g., the lower compressibility
and the greater rigidity for metals, which can also be re-
lated to the nature of the softer potential for liquid metals
compared to those for liquefied rare gases.

It is therefore of particular interest to study quantita-
tively how these dynamical properties are related to the
shape of the repulsive interactions of these typical fluids.
This is our main concern of present study. In this paper,
we discuss how the various dynamical properties of lig-
uids depend on the softness of the repulsive core via MD
simulations. Our model liquid is a so-called soft-sphere
fluid in which particles interact via the purely repulsive
inverse-power potential

wn=e(2)".

where the softness parameter n is varied from n = 4,6,9,
to 12. For a reasonable comparison of the calculated dy-
namical properties to different softness parameters, the
thermodynamic states were chosen to their freezing point
as determined by the Monte Carlo simulations [6,7]. We
have carried out MD simulations for a system of 500 par-
ticles over 70000 time steps [23], by applying an isoki-
netic constraint to the equations of motion [24-26].
First we briefly present thermodynamic properties ob-
tained and their softness dependence. The ratio of spe-
cific heats Cp/Cy (Cp and Cy are the specific heats
at constant pressure and constant volume, respectively),
which is related to the intensity of the propagating lon-
gitudinal collective mode, is found to have a value nearly
equal to unity for the softest potential of our calcula-
tions (i.e., n = 4) and systematically increases for in-
creasing softness parameter. Second we examine the self-
diffusion constant, non-Gaussian parameter, and the ve-
locity autocorrelation function. The reduced diffusion
constant and the Einstein frequency are independent of
the softness parameter, which is in good agreement with
the data of experiments and computer simulations. On
the other hand, as demonstrated by the power spectrum
of the velocity autocorrelation function, a significant vi-
brational behavior of the single-particle motion becomes
present for softer potentials, similar to those of liquid
metals. We also discuss the behavior of longitudinal
sound waves by computing dynamic structure factors for
different wave numbers covering the position of the first
peak of the static structure factor. A persistent sound
wave is clearly found for softness parameters n = 4 and
6, up to kp~1/3 ~ 5 (p is the number density), similar
to those of liquid metals. This persistent sound wave is
analyzed with a simple viscoelastic theory. We also calcu-
lated the wave-number dependence of the sound velocity
by fitting our dispersion data with the dynamic struc-
ture factor. A clear positive sound dispersion relation
was found for all softness parameters. The detail of the
dispersion relation leads to a conclusion on a systematic

(1.1)

dependence on the softness parameter. For n = 4 and 6,
the sound velocity rapidly approaches the instantaneous
sound velocity as the wave number increases, suggesting
a more solidlike elastic behavior for a softer repulsive core
than that for a steeper repulsive core.

II. MODEL

A. Soft-sphere fluids

We consider a simple model liquid of NV atoms of mass
m and diameter ¢. They interact via the purely repul-
sive inverse-power potential given by Eq. (1.1). Due to
the scaling property of the inverse-power potential, ther-
modynamic states are simply characterized by a single
coupling parameter. This can easily be shown by taking
the following units of length and time:

1
l=p 3, (2.1)

m €

where T is the temperature and kg the Boltzmann con-
stant [11]. We choose for a coupling parameter

[NIES

I = po* () . (2.3)

where 3 is the inverse temperature (kgT)~'. The freez-
ing point of the inverse-power potentials for n = 4, 6, 9,
and 12 was calculated by Monte Carlo simulations [6, 7]
and found to be I' = 5.54, 2.18, 1.33, and 1.15, respec-
tively. In the present work, we also have chosen the same
values of the softness parameter, i.e., n = 4, 6,9, and 12,
and the same values of I' in order to allow a reasonable
comparison among these different systems.

It is known that such short-range repulsive forces are
dominant in highly dense simple liquids. However, the
pure repulsive nature of the soft-sphere potential leads to
an extremely high pressure of a system. Thermodynamic
properties at more realistic conditions can be obtained by
adding a weak attractive force such as the Kac form [9],
as shown in our previous works with the generalized van
der Waals model [8,10,11]. This model has been found to
work very well for certain classes of real liquids by choos-
ing a suitable softness parameter n; for example, n >~ 15
for liquefied inert gases and n ~ 5 for liquid alkali metals
[10,11]. The Kac potential, however, exerts no influence
on the properties of either static and dynamic structures.
Therefore we take only the soft-sphere potentials in the
present work where we mainly focus our attention to the
dynamical properties of liquids.

B. Molecular-dynamics simulation

MD simulations have been performed for a system size
N = 500 with the usual periodic boundary conditions.
In our simulations, the number density was kept constant
(po® = 0.8) and the temperature was scaled to achieve
the respective I' corresponding to the freezing point. Ta-
ble I shows values of the parameters used in our MD
simulation.
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TABLE I. Parameters used in the present MD simula-
tions for the soft-sphere fluids. L is the side length of the
cubic simulation cell. The number density is kept constant
as po® = 0.8, which leads to L = 5(5)!/3¢. The last column
denotes the numerical errors A relative to the total internal
energy U of the system during each MD run over 70 000 time
steps. The system size N = 500 throughcut the present MD
simulation. r. is the potential cutoff length.

n r kpT/e re A 55 (%)
4 5.54 0.07576 L/2 0.008
6 2.18 0.1347 L/2 0.003
9 1.33 0.2176 4o 0.06
12 1.15 0.2342 30 0.04

Throughout the present work, an isokinetic constraint
proposed by Hoover et al. has been applied to the equa-
tions of motion [24-26]. The equations of motion are
therefore given by

mr; (t) =F; (t) — {mr; (t) , (2.4)
where F;(t) is the force acting on particle ¢ at time ¢ and
( is an isokinetic control parameter defined by

N
BY ki(t) - Fi(t)
i=1

(=~ 3N_1

(2.5)
The microscopic units of length and time were chosen to
be Egs. (2.1) and (2.2). The equations of motion were
integrated by a fifth-order differential algorithm [27, 28].
The integration error was monitored by examining the
following consistency measure A derived from Eq. (2.5)

[26]:

A = /0 ((s)ds —_ ‘—IB—‘ [U(O) - U(t)] )

BN 1) (2:6)

where U (t) is the internal energy of the system at time ¢.
The time increment At was chosen to be 0.00257 for all
softness parameters. With this choice, A was achieved to
be less than 0.06% relative to the internal energy per par-
ticle over 70000 time steps, as shown in Table I. No sign
of nucleation was observed throughout our simulations
in the production stage. The simulations were carried
out on a vector processor VP-50EX computer at EDV
Zentrum of Technische Universitdt Wien. The compu-
tational time required for 10000 time steps was about 1

h.
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C. Thermodynamic properties

In Table II, we summarize selected thermodynamic
properties obtained by our MD simulations. A good
quantitative agreement was obtained with other simu-
lations for the same system [5-7]. Note that for n = 4
and 6, a tail correction to the equation of state, P3/p,
was made by assuming the pair distribution function g(r)
equal to unity outside the cut-off sphere of the potential
(i.e., for r > 3/4l = $7/50) [1].

Due to the scaling property of the present model, it is
possible to determine the isothermal compressibility xr
and thermal expansion coefficient ap directly from the
equation of state, P3/p, and isothermal specific heat Cy
(10, 29):

B n 3\ PB n nCy
2 2 SV P14+ 2 - . (2.7
pxr 3 [(1 + n) P + 2 3kpN 27)

pxr ( nCy n
=X TV 2) .
apT="45 (3kBN + 2)

Using xr and ap, the ratio of specific heats vy = Cp/Cy
and adiabatic velocity of sound cs are obtained.

A remarkable softness dependence is found on these
quantities: Cy is almost constant, i.e., Cy ~ 3kgN,
which is simply understood in terms of a harmonic
model, which is of course valid at high-density or low-
temperature states [30]. However, it shows a weak but
clear tendency to decrease for increasing m. This be-
havior is compatible with the results of the MD simula-
tions for realistic potentials near their triple point, i.e.,
Cy = 2.7kgN and 3.6kgN for the Lennard-Jones sys-
tem [20] and liquid cesium [18, 19], respectively. A more
striking dependence of the softness is found on xr and
~. For a softer potential, a larger value of the rigidity
(the inverse compressibility) is obtained, compared with
that for a steeper core. 7 is nearly unity for n = 4 and
systematically increases as n increases. As a result, a
softer potential has a larger value of the adiabatic veloc-
ity of sound cs. As we will see below, these properties
are responsible for pronounced sound modes observed for
softer potentials such as n = 4 and 6.

(2.8)

III. SELF-DIFFUSION
A. Atomic displacement

The nature of self-diffusion in a dense liquid state is
contained in the even momenta of atomic displacements

Rap(t) = (Iri(t) — r:(0)[*7) (3.1)

TABLE II. Thermodynamic properties of the soft-sphere fluids near the respective freezing
point.
n Eg 26 £ 10%apT v es(r/1)
4 108.34 3.27 248.3 1.35 1.01 15.98
6 39.796 3.11 110.9 3.81 1.05 11.08
9 22.815 3.02 74.62 7.43 1.14 9.819
12 19.580 2.96 70.54 9.70 1.22 10.28
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where p is a positive integer. In the case of p = 1,
Eq. (3.1) defines the mean-square displacement (MSD).
It is well known that the MSD becomes t linear for a
large time interval, i.e., for the Einstein limit [1]:
. 1
D = lim _tRZ(t) ,

t— oo

(3.2)

where D is the self-diffusion constant. When the atomic
motion is governed by a Gaussian process, the following
relations for higher momenta are easily obtained [31]:

1 (2p+1)!

lim o Rap(t) = “ == (D). (3.3)

Equations (3.1) and (3.3) holds for a stochastic random-
work process. The non-Gaussian parameter a(t) as de-
fined by

3 Ra()
o) = 5 R -

(3.4)

tends to zero for a large time interval provided that the
self-diffusion obeys a Gaussian process [31, 32].

Using microscopic configurations generated by the MD
simulation, we have calculated the MSD and the non-
Gaussian parameter for the soft-sphere fluids. For all
softness parameters, the MSD goes over to the Einstein
limit for ¢t < 7. The reduced self-diffusion constant
D* = Drl7?% is found to fall into an almost identical
value for all softness parameters (Table III). This result
turns out to be consistent with realistic model liquids and
the hard-sphere fluids which is equivalent to the limit of
n — oo: Using the results of the MD simulations for
liquid argon [20], liquid cesium [18, 19], and hard-sphere
fluids [33], it is found that D* = 0.037 for liquid argon,
0.029 for liquid cesium, and 0.021 for the hard-sphere
fluid. The experimental data of D for liquid alkali metals
[34] are in a good agreement with our results, as shown
in Table IV. Therefore, we conclude that self-diffusion
constants among various different simple fluids and dif-
ferent pair potentials are successfully scaled to result in
an almost constant with the mean interparticle distance
(p~'/%) and the thermal velocity (1/v/mp).

The non-Gaussian parameter a(t) for the soft-sphere
fluids is shown in Fig. 1. It is clearly seen that the peak
value a,, and the reduced peak position t}, = 77,
of a(t) are insensitive to the softness parameter n. The
behavior of a(t) as well as a,, and t}, is a central issue

TABLE III. Reduced diffusion constant D* and Einstein
frequency Qo for the soft-sphere fluids near each freezing
point. Values of the diffusion constant calculated from the
mean-square displacement are shown in the second column
and those from the velocity autocorrelation function are in
the third column.

n D* =10°D(7/1?) Q0 Amtm /T
4 3.15 3.17 17.81 0.126
6 3.27 3.42 17.65 0.136
9 3.55 3.50 18.02 0.136
2 3.10 2.63 19.86 0.135

TABLE IV. Observed diffusion constants D at the melt-
ing point for the liquid alkali metals are listed in the second
column [34]. The third column represents the reduced diffu-
sion constants (see text).

Element D (107° cm?/s) D =10°D(7/1?)
Li 5.99 2.88
Na 4.23 3.34
K 3.72 3.25
Rb 2.70 3.38
Cs 2.16 3.19

on the trapping diffusion theory for the glass transition
recently developed by Odagaki and Hiwatari [35,36]. a(t)
characterizes the nature of the self-diffusion process of
particles in condensed media. We have found that a,,t;,
is rather constant irrespective to the value of the softness
parameter as shown in Table III. The present result that
amtr, gives rise to a constant for different n’s at each
freezing point seems to reveal a similarity of the diffusion
process to soft-sphere fluids not only in nature but also
quantitatively.

B. Vibrational motion

The normalized power spectrum of the velocity auto-
correlation function Z(t), Z(w), is defined by

T—ﬁ oo

Zw) = 67

e“t{v;(t) - vi(0))dt . (3.5)

—oo
It is well known that the zero frequency limit of Z(w) is
proportional to the self-diffusion constant D, i.e.,

™

D=—Zw=0).
52w =0)

Thus the spectrum function Z(w) can be interpreted as

a frequency dependent “diffusion constant.” Taking into

account statistical errors, the values of D obtained from

(3.6)

T
107'F ]
T 1
_2 1 ]
1030 100 10"

™

FIG. 1. The non-Gaussian parameter a(t) for the soft-
sphere fluids at each freezing point. Solid, dotted, dashed,
and dash-dotted curves are the results for n = 4, 6, 9, and 12,
respectively.
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Egs. (3.5) and (3.6) are found to be in a good agreement
with the results from Eq. (3.2), as shown in Table III.

A characteristic frequency of the spectrum function
Z(w), designated by g, may be given by the second-
frequency moment:

(e o)
Q%i/ &zwmw=llfﬂmv%@mn (3.7)
oo 3m
Qo is called Einstein frequency. €2y measures an effec-
tive restoring force of a particle referred in a liquid. The
reduced Einstein frequency Qo7 is found to be almost
independent of the softness parameter of soft-sphere po-
tentials, as shown in Table III. It is worth comparing
our results in liquid state with those in crystalline solids,
as demonstrated in Table V, in which the Einstein fre-
quency for soft-sphere solids in two different crystalline
structures, i.e., face-centered-cubic and body-centered-
cubic crystallines, are shown. The Einstein frequency
in the crystalline solids was calculated with a harmonic
approximation, i.e.,
n(n—1)

C,
2 __ n
(QOT) = 3 r (dl)n+2 )

@3

(3.8)

where d is the nearest neighbor distance in a given crys-
talline structure and C,, a constant depending on the soft-
ness and crystalline structure [37]. It is easily seen from
Table V that Q¢7 in either crystalline solid systemati-
cally decreases as the softness parameter increases. This
result is in a remarkable contrast to the results for the
dense liquids.

Figure 2 shows the power spectrum Z(w) for different
n’s at the respective freezing point. For all cases that we
have studied in the present work, the main peak of Z(w)
is located around €0/2, which is comparable with the
result of the MD simulations for liquid rubidium [13] and
liquid argon [14]. For softer potentials such as n =4 and
6, however, a clear side peak is observed. This behavior is
compatible with the MD result for liquid rubidium [13].
In order to analyze softness dependence of Z(w), we have
calculated the first-order memory function of Z(t), n,(t).
defined by

t

Z(t) = —Qg/ ng(t — s)Z(s)ds . (3.9)
0

Figure 3 shows the results of n4(t) for different softness

parameter n. It is clearly seen from Fig. 3 that the half

width at half maximum of n,(t) is almost independent of

n and n,(t) yields a more oscillative tail as decreasing n.

TABLE V. The reduced Einstein frequency 7o for the
face-centered-cubic (fcc) and body-centered-cubic (bcc) crys-
talline solids at each freezing point for the inverse power po-
tentials.

n fcc bcc
4 16.83 16.87
6 15.54 15.65
9 13.90 14.19
12 13.57 14.15

0.02

90_1 w

FIG. 2. The spectrum function of the velocity autocorre-
lation function Z(w) for the soft-sphere fluids at each freezing
point. Solid, dotted, dashed, and dash-dotted curves are the
results for n = 4, 6, 9, and 12, respectively.

According to the kinetic theory proposed by Sjogren
and Sjolander [38], the memory function n,(t) can be
separated into two parts, one associated with individual
binary collisions and the other due to collective events,
as follows:

na(t) = n7 (t) + 05 (1) ,

where nB(t) is the binary-collision part of n,(t) and nS (t)

the collective contribution to n,(t). We have numerically
extracted nC (t) from n,(t) by assuming a Gaussian func-
tion of t for n2(t) as

ng () = exp[—(t/to)’] ,

where the parameter t( is determined by the second fre-
quency moment of the Fourier transform of n,(t). As
shown in Fig. 4, n€(t) has a strongly oscillative behavior
for n = 4 and 6, which gives rise of a clear side peak
of Z(w) for these potentials. It has been pointed out by
Sjogren and Sjolander [38] that the coupling to the den-

(3.10)

(3.11)

ns(t)

FIG. 3. The memory function of the velocity autocorrela-
tion function, n,(t), for the soft-sphere fluids at each freezing
point. Solid, dotted, dashed, and dash-dotted curves are the
results for n = 4, 6, 9, and 12, respectively.
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FIG. 4. The collective contribution to the memory func-
tion n4(t),nS(t), for the soft-sphere fluids at each freezing
point. Solid, dotted, dashed, and dash-dotted curves are the
results for n = 4, 6, 9, and 12, respectively.

sity fluctuation (or equivalently to the longitudinal mode)
is important in n<(¢) at high density and low tempera-
ture. In Sec. IV, we shall return to the discussion of the
coupling effect of n,(t) to the density fluctuation depend-
ing on the softness of the potential.

Separating the memory function into the binary colli-
sion part and collective part given by Eq. (3.10), we are
able to evaluate the ratio of the self-diffusion constant D
and its contribution resulting from the binary collision

Dg;
/oonf(t)dt
D)y "% 612

Ds / ny(t)dt
0

In Table VI, we summarize D/Dg obtained from numer-
ical data of n,(t) and n?(t) together with the result for
the hard-sphere fluid [33]. It is clearly seen from Ta-
ble VI that D falls below Dp for all softness parame-
ter and D/Dpg is very close to the value for the hard-
sphere fluid, i.e., D/Dp = 0.55 [33]. It is concluded that
the binary-collision part of the single-particle motion is
rather insensitive to the choice of the softness parameter
n, whereas the single-particle motion associated with the
collective modes is essential for the detailed frequency

dependence of Z(w).

TABLE VI. The ratio of the self-diffusion constant D and
its binary collision value Dp at the freezing point for the
inverse power potentials. The data for the hard-sphere fluid
(n = oo) are taken from Ref. [33].

D/Ds

0.669
0.669
0.691
0.533
0.55

85@@» 3

IV. LONGITUDINAL COLLECTIVE MODE

To investigate the behavior of longitudinal sound
modes, we have computed the dynamic structure factor
S(k.w) through [1, 39. 40]

2

T I
S(k,w) = N Thﬂrngc T / expliwt]p(k, t)dt (4.1)
where
N
p(k,t) =Y exp[—ik - 1;(t)] . (4.2)

Ten different wave numbere (k = |k|) were chosen, com-
patible with the periodic boundary conditions of the MD
simulation cell, i.e.,

_27\'
L

where L is the side length of the cubic simulation cell.
The smallest wave number is therefore kI = 0.7916 for the
present MD simulation cell. We have used a fast-Fourier-
transform routine for the evaluation of Eq. (4.1). In order
to reduce the noises, raw S(k,w) data were convoluted
with a Gaussian resolution function

2
Flw,wn) = %,/l_j—rgexp [—41112(%) } . (44)

where w, defines the full width of the resolution func-
tion. The value of 7w, was typically ranged from 0.8 to
5 depending on the wave number k and the softness pa-
rameter n. Those values were carefully chosen so as to
maintain the exact second frequency moment of S(k,w)
[18,19], i.e.,

k ¢ (¢=1,2,...,10), (4.3)

/ WwiS(k,w)dw = — . (4.5)
J-s mf3

Results on the dynamic structure factor for various soft-
ness parameters are shown in Fig. 5.

Three characteristic behavior of S(k,w) are notable in
Fig 5: First, the central peak of S(k,w) becomes very
pronounced as n increases. Second, the side peak of
S(k,w) becomes more remarkable for softer potentials.
Third, for softer potentials, the side peak is still persis-
tent for large wave numbers. In order to understand these
characteristics more clearly, we have analyzed S(k,w)
with the hydrodynamic and viscoelastic theories, as fol-
lows.

In the small limit of wave numbers, i.e., in the hy-
drodynamic limit, the dynamic structure factor may be
expressed as [41]

= Sp(k,w) + SE(k,w) + S5 (k,w) + S} (k,w)

+5,(k,w), (4.6)

where Sg(k,w), Sﬁ(k,w), and S‘f(k,w) represent the
Rayleigh, two Brillouin, and two anti-Stokes components,
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respectively [41]:

1 (v—=1\ 2Drk?
Sr(k,w) =5 (7 . ) oy (ZTk2)2 : (4.7)
1 Ak?
Splkw) =5 ((w:i:csk)z — (Ak2)2) . (48)
and
_ k{A+ (y-1)Dr} ekt w
Sii(kiw) = s ((w T ek + (Ak2)2>
(4.9)

Here Dy is the thermal diffusivity, A the sound attenua-
tion coefficient, and ¢, the adiabatic sound velocity. The
Rayleigh and Brillouin components are related to the ra-
tio of specific heats v (= Cp/Cv): Defining I and Ip
to the integrated intensity of Sp(k,w) and Sp(k,w), re-
spectively, one can easily show that

Ig

o (4.10)

:7—1,

known as the Landau-Placzek ratio [1,41]. As we have
shown in Sec. II, v is very close to unity for the softer

0.15

3 0.1
=3
w
=
3
(7]
P 0.05

0
wT
™ L L T T
N (®)
0.03F \ 1
\l
3 .
X RO\
& 0.02F \ \
T \
3
(7]
> 0.01

FIG. 5. The dynamic structure factor for the soft-sphere
fluids at each freezing point. The wave number is (a) kl =
0.7916 and (b) kI = 3.958. Solid, dotted, dashed, and dash-
dotted curves are the results for n = 4, 6, 9, and 12, respec-
tively.

potentials such as n = 4 and 6. Thus, among the charac-
teristics of S(k,w) mentioned above, a weak central peak
and strong side peak of S(k,w) for softer potentials is
consistent with the behavior of the hydrodynamic result
on S(k,w).

To examine sound waves for the softer potentials at
large k’s, we have used a simple viscoelastic theory, in
which the dynamic structure factor is approximated by
[1,42]

S(k,w) _ 1 (k) w2[w?, — wi]

S(E) 7 jen(k)(@? — w22 + [w? —wd)? (4.11)
K

“o= 85k (4.12)

o2
wi =3wZ + % /g(r)(l —coskz) 81:(2r)dr . (4.13)

Here 7;(k) is a wave number dependent relaxation time
of the second-order memory function of the longitudinal
collective mode. The above result [Eq. (4.11))] was ob-
tained by neglecting the thermal fluctuation term and
by assuming a simple exponential form for the memory
function [1,41]. Lovesey and co-workers have proposed a
simple approximation for 7;(k) [42, 43]:

2 2\ 1/2
»r,-l(k)zz(“’——“ “’0) :

™

(4.14)

This approximation yields the correct ideal-gas value for
S(k,0) in the large limit of k. This model has been tested
by Lovesey for various model liquids and was found to
yield a result consistent with liquid alkali metals (and
thus for soft potentials) [42]. With this approximation,
it can easily be shown that a criterion for the existence
of a well-defined propagating sound mode is given by [42,
43)

(4.15)

This criterion has been reinvestigated in the present work
with the soft-sphere fluids. The static structure factor
S (k) was calculated by the sum rule

S(k) = / S(k,w)dw , (4.16)
— 00
and the result is given in Fig. 6. It can be seen that the
criterion of Eq. (4.15) is well satisfied for n = 4 and 6
up to large wave numbers, e.g., k! < 5. Note, however,
that Eq. (4.15) does not hold for the Lennard-Jones fluid
(1]. This is because in deriving Eq. (4.11) thermal fluc-
tuations were neglected, which becomes important for a
large value of v [1]. For the Lennard-Jones system - is
found to be 1.86 near the triple point [20], while for the
steepest case of the present soft potentials, i.e., n = 12,
v yields a somewhat smaller value, i.e., v = 1.22, and
thus Eq. (4.15) is still useful in the present model fluids.
We note that the Lennard-Jones potential has a steeper
effective core (n ~ 15-20) than that of the 12th-inverse-
power potential, due to the presence of the attractive
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FIG. 6. The criterion for propagating sound waves given
by Eq. (4.15) as function of the wave number k. o, o, A, and
O denote the results for n = 4, 6, 9, and 12, respectively.

part in the former potential.

We now consider both wave number and softness de-
pendence of the propagating sound wave. cs was ob-
tained by a least-square fit of our simulation data of
S(k,w) to Eq. (4.6) (see Fig. 7); c¢s is compared with the
zero-frequency sound velocity ¢o and the high-frequency
sound velocity ¢, where [41]

REOR
e = v
==

(4.17)

(4.18)

The wave number dependence of cg/co is a sound dis-
persion relation of the longitudinal collective mode. We
have observed a positive dispersion relation for all soft-
ness parameters (Fig. 7). For the softer potentials such
as n = 4 and 6, the velocity of sound obtained through
the hydrodynamic fit rapidly approaches to the high fre-
quency sound velocity for increasing wave numbers, sug-
gesting a strong elasticy of the fluid for large k’s. A sim-
ilar behavior was reported by the recent neutron scatter-
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FIG. 7. The ratio of sound velocities as functions of the
wave number k; o denotes coc(k)/co(k), ® denotes c (k) /co(k),
and A denotes c¢,(k)/co(k) obtained using the approximation
given by Eq. (4.14).

ing experiment for liquid cesium [44], which is consistent
with the present result. For the cases n = 4 and 6, the
compressibility becomes lower than that for the steeper
potentials such as n = 9 and 12, which gives rise to a
higher sound velocity and a weaker damping of the lon-
gitudinal collective mode for the former cases. Note that
the simple viscoelastic theory given by Egs. (4.11) and
(4.14) does not predict a correct dispersion relation, as
seen from Fig. 7.

Finally, we examine the coupling of the single-particle
motion to the longitudinal collective mode. Among the
collective part of the memory function of the velocity
autocorrelation function, n€(t), the dominant part of the
coupling to the density fluctuation is given by [38]

nSolt) = oz |, KBS

X[Fs(kvt) - Fs?(kvt)]
x F(k,t)dk . (4.19)
where c(k) is the direct correlation function, F,(k,t) the
self-part of the intermediate scattering function, F 0(k,t)
the free-particle value of F,(k,t), and F'(k,t) the normal-
ized intermediate scattering function, i.e.,

(4.20)

F(k,t) = ﬁ/_ exp[—iwt]S(k,w)dw .

To examine the dominant wave number of n$,(t), we
have calculated the k dependence of k%[c(k)]2S(k) in
Eq. (4.19). Tt is found that k%[c(k)]?S(k) takes the maxi-
mum value around kl ~ 4 for all n. It is clearly seen from
Fig. 5(b) that the propagating sound wave is persistent
in such a wave number for n = 4 and 6, resulting in the
oscillative behavior of nC(t) due to the term of F(k,t) in
Eq. (4.19). Because the characteristic frequency of the
sound wave at kl ~ 4 is situated around 247! [see Fig. 5
(b)], F(k,t) takes the first minimum at ¢t ~ 0.157, which
is in good agreement with the time interval of the first
minimum of n¢(¢) shown in Fig. 4.

V. DISCUSSION

We have made a systematic study on the role of re-
pulsive cores to dynamical properties in dense liquids,
using a simple model fluid of the purely repulsive in-
verse power potentials. It has been concluded that the
diffusive nature is insensitive to the choice of the soft-
ness parameter m as indicated by a similarity of both
the properly reduced diffusion constant D* and the non-
Gaussian parameter a(t). The reduced characteristic fre-
quency Qo7 of the vibrational motions of atoms in liquids
is also nearly constant for all softness parameters that we
have studied in the present work. Detailed shapes of the
frequency distribution of the vibrational mode are, how-
ever, much more sensitive to the choice of n. For n = 4
and 6, a clear side peak is observed in Z(w), which is
attributed by the oscillative tail of the memory function
n,(t) due to the coupling effect of the single-particle mo-
tion to the longitudinal collective mode in such liquids.

The behavior of longitudinal sound modes is investi-
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gated via the dynamic structure factor. It is found that
for the softer potentials such as n = 4 and 6, the propa-
gating sound wave is persistent for large wave numbers up
to kl ~ 5, while for the steeper potentials such as n =9
and 12, the sound mode is suppressed for such large wave
numbers. This behavior is reasonably well understood in
terms of the simple viscoelastic theory. The sound dis-
persion relation predicts a clear positive dispersion for
all softness parameters considered in the present study.
As the wave number increases, the sound velocity rapidly
approaches to the instantaneous sound velocity for n = 4
and 6, which suggests a more solidlike elastic behavior for
a softer repulsive core than that for a steeper repulsive
core.

We have shown significant roles of the softness of the
repulsive pair interaction on dynamical properties as well
as structural and thermodynamical properties of sim-

ple liquids. Remarkable differences in their dynamical
properties between liquid alkali metals and liquefied in-
ert gases are essentially interpreted by the difference of
the softness of repulsive cores, i.e., much softer repul-
sive cores for liquid alkali metals than for liquefied inert
gases. This result is thoroughly consistent with the previ-
ous conclusions obtained through simply thermodynamic
considerations [10, 11].
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